All-But-Many Lossy Trapdoor Functions and Their Applications

Dennis Hofheinz (Karlsruhe Institute of Technology)
Encryption: the "Real World"

- Many parties, many ciphertexts

C_1, C_4, C_5

C_7, C_8, C_9

C_2, C_3

C_6

Adversary gets C_1, …, C_9
A common simplification

- **Simpler:** one user/sender, one challenge

 ![Diagram](image)

 Adversary gets C^*

- **Justification:** usually, hybrid argument works
 - E.g., IND-CCA implies multi-user-multi-challenge-IND-CCA
- **But:** connection to real world not tight
- **And:** problematic in some cases (KDM, SOA, leakage)
Overview over this talk

All-But-Many Lossy Trapdoor Functions (ABM-LTFs)
A technical tool specifically designed for the multi-user-multi-challenge case

Construction of ABM-LTFs
A new look on Waters signatures

Applications of ABM-LTFs
Selective opening security, tight IND-CCA security, more (?)
Next stop

All-But-Many Lossy Trapdoor Functions (ABM-LTFs)
A technical tool specifically designed for the multi-user-multi-challenge case
Recap: Lossy Trapdoor Functions

- **Algorithms:**
 - Gen(1^k) outputs an evaluation/inversion keypair (ek,ik)
 - Eval(ek,X) outputs Y = F_{ek}(X) (for X from some preimage set X)
 - Invert(ik,Y) outputs F_{ek}^{-1}(Y)
 - LGen(1^k) outputs a (lossy) evaluation key ek'

- **Properties:**
 - Indistinguishability: Gen(1^k) \approx LGen(1^k)
 - Lossiness: image set F_{ek'}(X) "much smaller" than X

- **Constructions from LWE, DDH, **DCR** (efficient!):**

 ek = (pk, C = E_{pk}(b))
 (Invertible mode: b=1, lossy mode: b=0)

 \[F_{ek,T}(X) = C^X = E_{pk}(bX) \]
Recap: PKE security from LTFs

- **Intuition:**
 - Scheme uses LTF in invertible mode
 \((\text{Enc} = \text{LTF evaluation}, \ \text{Dec} = \text{LTF inversion})\)

- **To show security:**
 - Switch to lossy mode (use LTF indistinguishability)
 - Then, adversary gains no info about message (LTF lossiness)
 - Actually, yields *tight* proof for multi-challenge case
PKE security from LTFs: CCA?

- But wait... adversary could be active:

 Adversary gets pk, \(C^*\) and access to Dec oracle

- Problem: if we switch to lossy mode, can't simulate Dec oracle
Recap: All-But-One LTFs

- **Algorithms:**
 - \(\text{Gen}(1^k, T^*) \) outputs an evaluation/inversion keypair \((ek, ik)\)
 - \(\text{Eval}(ek, T, X) \) outputs \(Y = F_{ek, T}(X)\) (for tag \(T\))
 - \(\text{Invert}(ik, T, Y) \) outputs \(F_{ek, T}^{-1}(Y)\) (works only for \(T \neq T^*\))

- **Properties:**
 - **Indistinguishability:** \(\text{Gen}(1^k, T) \approx \text{Gen}(1^k, T') \)
 - **Lossiness:** image set \(F_{ek, T^*}(X)\) ”much smaller” than \(X\)
 (i.e., only \(F_{ek, T^*}\) lossy, all other \(F_{ek, T}\) are invertible)

- **Efficient construction based on Paillier/DJ encryption:**

 \[
 \begin{align*}
 ek &= (pk, C = E_{pk}(T^*)) \\
 F_{ek, T}(X) &= (C/E_{pk}(T))^X = E_{pk}((T^*-T)X)
 \end{align*}
 \]
Intuition:

- Scheme uses ABO-LTF, with **unique** tag for every ciphertext (Encryption is "double encryption/evaluation" with ABO-LTF and LTF [PW08])

To show security (oversimplified):

- Set lossy tag T^* to C^*-tag (use ABO-LTF and LTF indistinguishability)
- Decrypt using ABO-LTF inversion key
- **Does not work with many challenges** (Leakage/KDM/SOA)
All-But-N LTFs \text{[HLOV09]}

- **Algorithms:**
 - \text{Gen}(1^k, T_1^*, \ldots, T_N^*) outputs an evaluation/inversion keypair \((ek, ik)\)
 - \text{Eval}(ek, T, X) outputs \(Y = F_{ek,T}(X)\) (for tag \(T\))
 - \text{Invert}(ik, T, Y) outputs \(F_{ek,T}^{-1}(Y)\) (works only for \(T \neq T_i^*\))

- **Properties:**
 - \text{Indistinguishability:} \(\text{Gen}(1^k, T_1, \ldots, T_N) \approx \text{Gen}(1^k, T_1', \ldots, T_N')\)
 - \text{Lossiness:} image set \(F_{ek,T^*}(X)\) ”much smaller” than \(X\) (i.e., \(F_{ek,T}\) lossy if and only if \(T = T_i^*\) for some \(i\))

- **Construction based on Paillier/DJ encryption:**

\[
\begin{align*}
\text{Prepare degree-N polynomial } f(T) &= \sum f_i T_i \\
\text{ek} &= (pk, C_0 = E_{pk}(f_0), \ldots, C_N = E_{pk}(f_N)) \\
F_{ek,T}(X) &= (\prod C_i T_i^x) X = E_{pk}(f(T) X)
\end{align*}
\]
All-But-N LTFs [HLOV09]

- **Algorithms:**
 - Gen($1^k, T_1^*, ..., T_N^*$) outputs an evaluation/inversion keypair (ek, ik)
 - Eval(ek, T, X) outputs $Y = F_{ek,T}(X)$ (for tag T)
 - Invert(ik, T, Y) outputs $F^{-1}_{ek,T}(Y)$ (works only for $T \neq T_i^*$)

- **Construction based on Paillier/DJ encryption:**

 Prepare degree-N polynomial $f(T) = \sum f_i T^i$ with zeros $T_1^*, ..., T_N^*$

 $ek = (pk, C_0 = E_{pk}(f_0), ..., C_N = E_{pk}(f_N))$

 $F_{ek,T}(X) = (\prod C_i^{T_i^*})^X = E_{pk}(f(T)X)$

- **Problem:** space complexity linear in the number of challenges
 - Actually, this is necessary to encode precisely N lossy tags
 - Yields SO-CCA secure PKE that depends on number of challenges
All-But-Many LTFs

- **Intuition:**
 - There are (superpoly) many lossy tags and (superpoly) many invertible tags
 - Lossy and invertible tags computationally indistinguishable
 - Invertible tags easy to sample, but trapdoor required to sample lossy tags

![Tag sets (x marks lossy tags):](image)
All-But-Many LTFs

- **Algorithms** (slightly simplified):
 - Gen(1^k) outputs evaluation/inversion/tag keys (ek,ik)
 - Eval(ek,T,X) outputs $Y = F_{ek,T}(X)$
 - Invert(ik,T,Y) outputs $F_{ek}^{-1}(Y)$ for all invertible tags T
 - LTag(ik) outputs a lossy tag

- **Properties:**
 - Indistinguishability: $A^{LTag(ik)}(ek) \approx A^{Random-Tag-Oracle(ek)}(ek)$ for all PPT A
 - Lossiness: $F_{ek,T}(X)$ ”much smaller” than X for lossy tags T
 - Evasiveness: $\Pr[A^{LTag(ik)}(ek) \rightarrow fresh lossy tag] \text{ negl.}$ for all PPT A

- Syntactic similarity to ”blinded signatures” (valid sig = lossy tag)
Next stop

Construction of ABM-LTFs
A new look on Waters signatures
First attempt

- Syntactic similarity to "blinded signatures" (valid sig = lossy tag)
- First attempt: so let's simply (Paillier/DJ-)encrypt signatures!

Evaluation "magically" verifies signature inside encryption
...should end up with $C = E(0)$ iff sig is valid, then sets $Y := C^X$

- Sig valid $\Rightarrow C = E(0) \Rightarrow F_{ek,T}(X) = C^X = E(0)$ lossy
- Sig invalid $\Rightarrow C = E(d)$ for $d \neq 0 \Rightarrow F_{ek,T}(X) = C^X = E(dX)$ invertible

Problem: (Paillier/DJ-)encryption only additively homomorphic

- How to evaluate signature using only addition in \mathbb{Z}_N?
Working with encrypted matrices

- **Idea 1:** use matrices instead of single elements (inspired by [PW08])

\[
T \rightarrow E(M) = \begin{pmatrix}
E(M_{1,1}) & E(M_{1,2}) & E(M_{1,3}) \\
E(M_{2,1}) & E(M_{2,2}) & E(M_{2,3}) \\
E(M_{3,1}) & E(M_{3,2}) & E(M_{3,3})
\end{pmatrix}
\]

- Use "encrypted" matrix-vector multiplication:

\[
F_{ek,T}(X) = E(M) \circ \begin{pmatrix}
X_1 \\
X_2 \\
X_3
\end{pmatrix} = \begin{pmatrix}
\prod_j E(M_{1,j})^{X_j} \\
\prod_j E(M_{2,j})^{X_j} \\
\prod_j E(M_{3,j})^{X_j}
\end{pmatrix} = E(M \cdot X)
\]

- $F_{ek,T}$ lossy \iff M non-invertible \iff $\det(M) = 0$ (or non-invertible)

- **Payoff:** $\det(M)$ can be **cubic** in encrypted values

- Use determinant to encode more complex computations
Waters signatures

- Assume pairing $e: G \times G \rightarrow G_T$
- Verification key: $A = g^a$, $B = g^b$, H_0, \ldots, H_n ($H(M) := H_0 \prod H_j^M$)
- Signature for M: $R = g^r$, $Z = g^{ab} H(M)^r$
- Verification: check $e(A,B) e(H(M),R) = e(g,Z)$
- Secure under CDH in G (Waters' hash H plays crucial role in proof)

Idea 2: emulate Waters signatures in Z_N

- Use encryption instead of exponentiation ($A=E(a)$, $B=E(b)$, etc.)
- Pairing becomes Paillier/DJ multiplication (encode verification into $\det(M)$!)
- CDH in G becomes “Paillier-No-Mult”: $E(a), E(b) \rightarrow E(ab)$ hard
The construction (slightly simplified)

- **Evaluation key:** \(ek \) = (A=E(a), B=E(b), H_i=E(h_i) \) \((i=0,...,n) \)

- **Inversion key:** \(ik \) = (ek,sk) \((sk = \text{secret key for P/DJ encryption}) \)

- **Tags:** (R=E(r), Z=E(z), rnd) \((\text{rnd is randomness for CHF}) \)

Note: \(\text{det}(M) = z - (ab+rh) \), so: T lossy \(\iff \) M singular \(\iff \) \(z = ab + rh \)

- Lossy tags computable from CHF trapdoor, a,b, and the \(h_i \)

- **Evaluation:** \(F_{ek,T}(X) = E(M) \circ X = E(M \cdot X) \)

- **Inversion:** decrypt \(E(M) \) and \(E(M \cdot X) \), solve for \(X \)
Properties of our ABM-LTF

- **Tags:** \((R=E(r), \ Z=E(z), \ \text{rnd})\) (rnd is randomness for CHF)

\[
T \rightarrow E(M) = \begin{pmatrix}
E(z) & E(a) & E(r) \\
E(b) & E(1) & E(0) \\
E(h) & E(0) & E(1)
\end{pmatrix}
\]

with \(E(h) = H(t) = h_0 + \sum t_i h_i\)

\[
T \text{ lossy } \iff M \text{ singular } \iff z = ab + rh
\]

Note: \(\det(M) = z - (ab + rh)\), so: \(T\) lossy \(\iff\) \(M\) singular \(\iff\) \(z = ab + rh\)

- **Lossy tags computable from CHF trapdoor, a,b, and the h\(_i\)**

- **Indistinguishability** (lossy tags look like random tags):
 - Lossy tags can be produced without sk \(\Rightarrow\) reduction to DCR

- **Evasiveness** (cannot produce one more lossy tag):
 - Lossy tags are essentially Waters-in-\(Z_N\) sigs
 - Proof similar to Waters' proof, but reduction to **Paillier-No-Mult**
Applications of ABM-LTFs
Selective opening security, tight IND-CCA security, more (?)
Selective Opening Security

- Intuition: adaptive corruption of multiple senders
- Security can be indistinguishability- or simulation-based
 - Intuition: adversary should not learn anything about unopened ciphertexts
 - **No hybrid argument, multiple challenges inherent**
- Without Dec oracle, lossy encryption works fine (make Enc lossy)
 - **Problem**: what if Enc is lossy and adversary makes Dec queries?
Selective Opening Security

- **Idea** [HLOV09]: (double) encryption with tags, make only C_i lossy
 - [HLOV09] only have All-But-N-LTFs (inefficient, construction linear in n)
- **Used with our ABM-LTF:**
 - First SOA-CCA secure scheme with constant-sized ciphertexts and keys
 - Complexity of scheme does not grow with $n
Open problem: construct tightly CCA-secure PKE scheme
 - "Tightly secure": reduction is tight in number of challenges and users
 - Known: Cramer-Shoup can be proven tightly in number of users

Idea: make all challenges lossy simultaneously (ABM-LTF)

Problem: Paillier/DJ-based construction is itself not tight

Solution: another ABM-LTF construction based on pairings
 - Idea: combine Boneh-Boyen sigs with "blinding by subgroup element"
 - Yields tight CCA security in number of challenges, but:
 - Needs strong assumptions: strong DDH + subgroup indistinguishability

Better ABM-LTF constructions?
CCA-secure Key-Dependent Message Security (?)
- Many challenges, but all may depend on secret key
- No hybrid argument, and ABM-LTF application not straightforward
- But: use ABM-LTFs without inversion?

New signature schemes (?)
- Message = suitable ABM-LTF tag chosen by signer
- Signature = "proof" that tag for ABM-LTF is lossy
 - Does not work: "proof" = different X_1, X_2 with $F_{ek,T}(X_1)=F_{ek,T}(X_2)$

Leakage resilience?
Open problems:

- Smaller, better, faster ABM-LTFs (from more reasonable assumptions)
- More applications (KDM-CCA, sigs, …)